Blowing-up solutions for supercritical Yamabe problems on manifolds with umbilic boundary

نویسندگان

چکیده

We build blowing-up solutions for a supercritical perturbation of the Yamabe problem on manifolds with umbilic boundary, provided dimension manifold is n ≥ 8 and that Weyl tensor W g not vanishing ∂ M .

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bubbling solutions for supercritical problems on manifolds

Article history: Received 15 May 2014 Available online 10 November 2014 MSC: 35B10 35B33 35J08 58J05

متن کامل

A fully nonlinear version of the Yamabe problem on locally conformally flat manifolds with umbilic boundary

We prove existence and compactness of solutions to a fully nonlinear Yamabe problem on locally conformally flat Riemannian manifolds with umbilic boundary.

متن کامل

Sign-changing Blowing-up Solutions for Supercritical Bahri-coron’s Problem

Let Ω be a bounded domain in Rn, n ≥ 3 with smooth boundary ∂Ω and a small hole. We give the first example of sign-changing bubbling solutions to the nonlinear elliptic problem −∆u = |u| n+2 n−2+ε−1u in Ω, u = 0 on ∂Ω, where ε is a small positive parameter. The basic cell in the construction is the signchanging nodal solution to the critical Yamabe problem −∆w = |w| 4 n−2w, w ∈ D(R) which has l...

متن کامل

Large Solutions for Yamabe and Similar Problems on Domains in Riemannian Manifolds

We present a unified approach to study large positive solutions (i.e., u(x) → ∞ as x → ∂Ω) of the equation Δu + hu − kψ(u) = −f in an arbitrary domain Ω. We assume ψ(u) is convex and grows sufficiently fast as u → ∞. Equations of this type arise in geometry (Yamabe problem, two dimensional curvature equation) and probability (superdiffusion). We prove that both existence and uniqueness are loca...

متن کامل

Existence of positive solutions for fourth-order boundary value problems with three- point boundary conditions

In this work, by employing the Krasnosel'skii fixed point theorem, we study the existence of positive solutions of a three-point boundary value problem for the following fourth-order differential equation begin{eqnarray*} left { begin{array}{ll} u^{(4)}(t) -f(t,u(t),u^{prime prime }(t))=0 hspace{1cm} 0 leq t leq 1, & u(0) = u(1)=0, hspace{1cm} alpha u^{prime prime }(0) - beta u^{prime prime pri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Equations

سال: 2022

ISSN: ['1090-2732', '0022-0396']

DOI: https://doi.org/10.1016/j.jde.2021.11.030